Journal of Organometallic Chemistry, 99 (1975) 251-262 0 **Elsevier Sequoia S.A., La usagne-Priited in The Netherlands.**

PROTON AND CARBON-13 NMR STUDY OF GROUP IVB (117,119Sn, 207Pb) AND MERCURY (¹⁹⁹Hg) ORGANOMETALLICS

251'

.-

ł.

 $\mathcal{L}^{\mathcal{L}}$. In the \mathcal{L}

.

GURDIAL SINGH. .

*Central Research Department *, Experimental Station. E. I_ du Pont de Nemours hnd Company, Wilmington, Delaware 19898 (U.S.A.)*

a sa taon na F

(Received March Zlst, 1975)

Summary

Proton and carbon-13 data of $(CH_3)_3$ SnX, $[(CH_3)_3CCH_2]_3$ SnX, $(CH_3)_3PbX$, $[(CH₃)₃ CCH₂)₃PbX$, and $(CH₃)₃ CCH₂HgX$, where X = Me, Et, i-Pr, t-Bu, neo-Pent, **CH=CH2, Cl, Pr, I; or OH, are reported. The effects of electronic and steric** factors on ¹ $J(MC)$ and ² $J(MH)$ (M = Sn, Pb, and Hg) have been studied. Linear relationships exist between ${}^{1}J(MC)$ and ${}^{2}J(MH)$. These relationships are discussed **in terms of the mechanisms of the coupling constants;**

The understanding of the mechanism of heavy nuclei spin--spin coupling with directly bonded carbon-13 and with geminal protons (M-C-H) is of interest particularly to gain insight into the bonding and structure of organometallic molecules. Although several studies describing substituent effects on geminal tin-proton, lead-proton, and mercury-proton coupling constants have been reported in the recent years relatively few'reports are available on the corresponding one-bond metal-carbon coupling constants. In this paper; we report M-C and M-C-H coupling constants of trimethyl- and trineopentyl-tin and -lead derivatives and neopentylmercury~derivatives and discuss them qualitatively in terms of the relative importance of their mechanisms of coupling.

According to the theory of spin-spin interaction developed by Ramsey [l), couplmg,is determined by the sum of three terms: (1) the Fermi contact; (2) the interaction between the electron spin and the nuclear dipole, J(dipole); and (3) the interaction of the magnetic field of the nuclear dipole with orbital.. magnetic moment of the electron, J(orb). The contact term is usually considered to be dominant in the coupling between directly bonded nuclei [2,3]. How**ever, the other terms, particularly the dipole term can-make significant contri**bution to one-bond metal-carbon coupling.

 $*$ Contribution no. 2155. $-$

Results

Tables 1-4 list the ¹H NMR data of tin and lead compounds, R_3MX ($R =$ CH_3 , $CH_2C(CH_3)$. The spectra of the compounds with $X = alkyl$ and vinyl **were run on pure liquids as well as in deuterochloroform (l/1' by volume), and** no concentration effect on ^{117,119}Sn⁻¹H and ²⁰⁷Pb⁻¹H coupling constants was detected. Also in the spectra of $(CH_3)_3$ SnCl and $(CH_3)_3$ SnBr, measured at 0.1-3.0 M concentration range in CDCl₃, no concentration dependence of the tin-pro**ton coupling constants was observed. Our values were essentially the same as reported by Lorbeth and Vahrenkamp [4] at** ~ 0.25 *M* **concentration in CCl₄. However, lead-proton coupling constants of trimethyllead halides increased** with concentration (see Table 3). The increase in ²J(PbH) is attributed to the **self-association of these compounds in solution. No concentration effect on the terminal lead-proton coupling was noted in trineopentyllead halides and hydroxide_**

The 13C NMR spectra of tin, lead, and mercury compounds were also run in CDCl+ The pertinent data are listed in Tables 5,6 and 7. Mercury-carbon coupling constants particularly 'J(HgC), like 2J(HgH) [5], in neopentyhnercuric cyanide, chloride, and acetate show considerable concentration dependence.

'J(PbC) and 2J(PbC) in hexaorganodilead. **McFarlane et al.** *163,* **determined the lead-carbon coupling constants of hexamethyldilead by heteronuclear magnetic double resonance and, surprisingly, assigned the larger coupling con**stant (+92 Hz) to ²J(PbC) and the smaller (+28 Hz) to ¹J(PbC). By comparison, **in hexamethylditin !** *Jc'* **"SnC)** *(-240* **Hz) is numerically considerably greater** than $2J(^{119}SnC)$ (-56 Hz) [7]. The negative signs of these coupling constants are due to the negative magnetogyric ratio of ¹¹⁹Sn. (Note: For convenience,

TABLE 1

PROTON NMR DATA-OF TRIMETHYLTIN COMPOUNDS. (CR33SnX

^{*d*} Downfield from internal TMS. ^{*b*} About 0.5 *M* in CDCI₃. ^{*c*} 117_{Sn} and ¹¹⁹Sn satellites unresolved.

PROTON NMR DATA OF TRINEOPENTYLTIN COMPOUNDS. *ECH*>>CCH₂ l₃SnX

a Downfield from internal TMS.

TABLE 2

the signs of 'J(MC) and 'J(MH) coupling constants have been disregarded in this paper).

Our present study with neopentyllead compounds indicates a possible need to interchange the assignments of the lead--carbon coupling constants in hexamethyllead. For example, in hexaneopentyldilead, we have measured and assigned 58 Hz and 19 Hz to 'J(PbC) and 2J(PbPbC), respectively, on the following basis. A comparison bf 'J(PbC) and 2J(PbCC) in the other neopentyllead derivatives (Table 6) indicates that the former coupling is usually several-folds greater than the latter. The *J(PbCC) in hexaneopentyldilead is 24 Hz, which means the assignment of the 58 Hz coupling to $\frac{1}{3}$ (PbC) is more consistent with **the trend than if it were assigned the smaller coupling of 19 Hz. Likewise, in hexamethyldilead also the larger lead-carbon coupling probably belongs to 'J(PbC) and the smaller to 2J(PbPbC).**

(continuedonp.2571

TABLE 3

a Downfield from internal TMS.

TABLE 4

PROTON NMR DATA OF TRINEOPENTYLLEAD COMPOUNDS, $[(CH_3)_3CCH_2]_3PbX$

 a Downfield from internal TMS.

CARBON-13 NMR DATA OF TIN COMPOUNDS, R3SnX

^G Downfield from internal TMS, ^b By volume, ^C Upfield from internal TMS, ^d Values in parentheses are ¹J(¹¹⁷SnC) coupling constants, ^e ¹¹⁷Sn and ¹¹⁹Sn satellites unresolved, o la

TABLE 6

CARBON-13 NMR DATA OF LEAD COMPOUNDS, R3PbX

355

^a Downfield from internal TMS, b By volume, ^c Upfield from internal TMS, ^d See text for assignment of these values, ^c δ (C(4)), 151.1 ppm^a; δ (C(5)), 151.2 ppm^a; δ (C(5)),

TABLE 7

^{*a*} Downfield from internal TMS. ^b Calculated from the chemical shifts given in ref. 5 using CS₂ chemical shift of 192.7 ppm downfield from internal TMS. ^C By volume, ^{*d*} Extrapolated, ^{*e*} The ¹³CH₃ (3 *M*

Discussion

Theoretical studies indicate that Fermi contact is the dominant term which determines the magnitude of geminal tin-proton [S-lo], lead-proton [S-lo], and mercury-proton [8-12] coupling constants. Smith [13] extended the origi**nal valence-bond theory of geminal proton-proton [14] and carbon-proton [15]** coupling to the geminal metal-proton couplin in $(CH_3)_4M$ (M = Sn and Pb) and $(CH₃)₂$ Hg. According to his extension, a simplified Fermi contact term for 2 *J*(M-C-H) can be written as:

$$
{}^{2}J(M-C-H) \propto \gamma_{M}\gamma_{H}(\alpha_{MC})^{2}(\alpha_{HC})^{2} \left(\frac{Z_{M}^{*}}{n_{M}}\right)^{3} \left(\frac{Z_{H}^{*}}{n_{H}}\right)^{3} \Delta E^{-1}
$$
 (1)

where γ 's are nuclear magnetogyric ratios, $(\alpha_{MC})^2$ and $(\alpha_{HC})^2$ are the fractional **s characters of the orbitals of M and H respectively involved in bonding to car**bon, Z_M^* and Z_H^* are the ϵ fective nuclear charges of these orbitals, *n* is the principal quantum number of the period to which the atom belongs, and ΔE is the average energy approximation term. The $(\alpha_{\text{HC}})^2$, n_{H} , and Z_{H} ^{*} are equal to 1

In the trimethyl-tin and -lead series the geminal metal-proton coupling increases with the substituent electronegativity $\text{OH} > \text{Cl} > \text{Br} > \text{I} \simeq \text{CH}=\text{CH}_2 > \text{I}$ Alk. This is understandable from the expected increase in $(\alpha_{MC})^2$ and Z_M^* with **increase in the substituent electronegativity. According to Bent's isovalent model [lS] the s character tends to concentrate in orbitals directed toward more electropositive groups. However, this is not so particularly in the trineopentyllead halides in which the geminal lead-proton coupling constants are smaller than those in the alkyltrineopentyllead compounds. Although considerably more s character is expected in the Pb-C bonds of the trineopentyllead halides than of the alkyltrineopentyllead compounds not only because of the higher electronegativities of the halides compared to those of the alkyl groups but also because of the steric opening of the neo-Penty13Pb group due to the** polarizability of the Pb^{δ +} $-X^{\delta-}$ bond in the former compounds.

The anomalous trend in *J(PbH) suggests that one or more assumptions on which eqn. 1 is based are probably not valid for the organolead compounds. It is most likely that the AE term is not constant. Carbon-13 data provides more intimate information on this point. For example, Roberts et al. [17,181, related two-bond metal-carbon coupling constants to two-bond metal-proton coupling constants by

$$
^{2}J(MC) = a^{2}J(MH)
$$
 (2)

where α is a constant. Eqn. 2 is a simple extension of the relationship derived by **Karabatsos [15] for hydrocarbon systems (M = H) and can be derived from** eqn. 1 and a similar expression written for ${}^{2}J(MC)$. The average energy approximation usually holds for hydrocarbons and $a = 0.3$, 0.4, and 0.61 for sp^3 , sp^2 . **and** sp **hybridized carbons, respectively.**

We have calculated the a values of pertinent neopentyl-tin; -lead, and -mercury compounds (Table 8). In alkyl- and vinyl-neopentylmercurials the o values are approximately equal to 0.3. Rut they-are higher in neopentylmercuric chloride (0.35 j; acetate (O-34), and nitrate (0.38) which we previously interpret-

258

TABLE 8

a VA $2xMC$ = $a^2x(MH)$ OF **UES IN THE EXPRE** AND -MERCURY COMPOUNDS

Fig. 1. Linear relationships between $1J(119Sn13C)$ and $2J(119SnH)$ in $(CH_3)_3SnX$ (O) and $[(CH_3)_3CCH_2]_3-SnX$ (A) derivatives.

ed in terms of hyperconjugative $d\pi - p\pi$ **bonding involving 6d or 6(p + d) or**bitals of mercury and the adjacent C-H bonds [5]. However, from the results of present study of neopentyl-tin and -lead compounds it appears that the **hyperconjugative interaction might not be of as much significance as was originally thought. For example, in'trineopentyltin chloride and all the neopentyllead compounds, includmgthe mixed methyl-neopentyllead derivatives,** the a values are much higher than expected $(0.3-0.4)$ for any incipient double **bond between the metal and carbon, M---C---H. Consequently, the high values of** *a can* **be better explained by a possible failure of the average energy** approximation than by hyperconjugative $d\pi - p\pi$ bonding alone. From this **empirical analysis of the results in Table 8 it appears that the breakdown of the** energy term (ΔE) in the neopentyl organometallics occurs in the following order: $Pb > Sn > Hg$.

Relationships between 'J(MC) and 'J(MH). Linear plots of 'J(MC) vs. 2 *J*(MH) of tin, lead, and mercury compounds are shown in Figs. 1, 2 and 3, respectively. The relationships of tin and lead compounds when extrapolated **give large intercepts for 'J(MH). McFarlane 1191 observed similar intercept for**

Fig. 3. Linear relationship between ${}^{1}J({}^{199}\text{Hg}^{13}\text{C})$ and ${}^{2}J({}^{199}\text{Hg}H)$ in (CH₃)₃CCH₂HgX derivatives.

2J(SnH) in a series of methyltin compounds and interpreted that one of these coupling constants receives significant contribution from J(dipole) and/or J(orb). Most probably it is J(dipole) which contributes significantly to ¹J(SnC) and 'J(PbC) because the dipole term is usually strong when heavy nuclei are involved.

By comparison, the 'J(HgC)-2J(HgH) correlation in Fig. 3 when extrapolated passes almost through the origin, suggesting that Fermi contact is the dominant mechanism of coupling between directly bonded mercury and carbon. In other words, the dipole term makes practically no contribution to 'J(HgC). This is probably due to high degree of s character (>50%) in the mercury orbitals bonding to carbon. The dipole interaction usually decreases with mcreasing s character and is zero for pure s orbitals 1203,

Experimental

. .

IVlUR spectra. Proton spectra were run on Varian Associates A60 or T60 spectrometer at a probe temperature of 35 ± 1 °C. The ¹³C spectra were run on **a Bruker HFX-90 spectrometer equipped with a Digilab NMR-3 Fourier transform accessory_ The spectrometer was operated at 22.63 MHz with a time-shared deuterium lock on CDC13, and using a broadband proton noise decoupler to** eliminate ¹³C⁻⁻¹H couplings. Single coil Fourier transform operation was used

with exciting rf pulses of about 10 microseconds_ The system was operated with an 8192 point data file and 5000 Hz bandwidth. Good spectra were generally obtained with 1999-5999 scans, except that in the case of 0.2 M solution of **(CH₃)**,PbBr 35000 scans were used.

Compounds_ **Trimethyltin and trimethyllead compounds used in this study are known compounds and were prepared by the methods described in literature [21,22]. Tetraneopentyltin, trineopentyltin chloride, and hexaneopentylditin were prepared by Zimmer et al. [23], who also supplied the samples used in** this study. Neopentyllead derivatives have become available from our previous **studies 124,253. New trineopentyllead compounds prepared for this study are described below.**

Vinyltrineopentyllead. **To a suspension of 5.0 g (0.01 mol) of trineopen**tyllead bromide in 100 ml of anhydrous ether at -30° C was added dropwise **during stirring 13.3 ml (0.02 mol) of 1.5** *M* **solution of vinylmagnesium chloride in tetrahydrofuran. Dry nitrogen atmosphere was maintained throughout the addition of the Grignard reagent_ The reaction mixture was decomposed with 50 ml of ice-cold water. The organic layer was separated and dried over anhydrous** sodium sulfate. The volatiles were removed in vacuo at room temperature and **remaining liquid was distilled under reduced pressure_ Vinyltrineopentyllead** distilled at $71-72^{\circ}\text{C}/0.25$ mmHg as a colorless liquid n_{D}^{25} 1.5063. Yield was 3.2 g (72%). Anal. Found: C, 45.92; H, 8.11. C₁₇H₃₆Pb calcd.: C, 45.62; H, 8.05%.

Its infrared spectrum (neat) showed absorptions at 304Ow, 2956s, 2905s, 2866s, 1455m, 1374w, 1352w, 123Os, 1112m, 995w, 925m, and 722m cm-'.

Trineopentyllead iodide_ **A solution of 2.54 g (0.01 mol) of.iodine in 60 ml of anhydrous benzene was added dropwise during stirring to a solution of 8.40 g (0.01 mol) of hexaneopentyldilead in 100 ml of anhydrous benzene. Benzene** was removed in vacuo and the remaining solid was crystallized from aqueous **ethanol. Trineopentyllead iodide was obtained as white solid in 95% yield; m-p. 106-107°C. Anal. Found: C, 33.31; H, 5.92. C₁₅H₃₃IPb calcd.: C, 32.90; H, 6.03%.**

Trineopentyllead hydroxide_ **To a suspension of 2.74 g (0.005 mol) of trineopentyllead iodide in 50 ml of distilled water was added a solution of 0.40 g (0.01 mol) of sodium hydroxide in 20 ml of distilled water. The mixture was stirred for 1 hour and filtered_ Trineopentyllead hydroxide was obtained as white solid in ahnost quantitative yield. It was crystallized from aqueous** ethanol; m.p. 175-177°C. Anal. Found: C, 41.35; H, 7.52. C₁₅H₃₄OPb calcd.: **C, 41.17; H, 7.77%.**

Its infrared spectrum (KBr) showed absorptions at 3200w (broad OH stretch) [26], 296Os, 2865s, 1600w(br), 1455s, 136Os, 1312m (in plane OH deformation) [26],1235s, 1114s, llOOm, 1005m, and 743s cm-'.

Acknowledgement

I am grateful to Prof. Hans Zimmer for the samples of neopentyltin compounds, and to D.W. Ovenall for assistance in running the ¹³C NMR spectra.

References

2 J.A. Pople and D.P. Santry, Mol. Phys., 9 (1964) 1.

- **C.J. &meson end HS; Gutowsky. J. C&i. Phys.. 51 (1969) 2790.**
- **4 J. Lorberth and H. Vahrenkamp. J. Organometal. Chem., 11 (1968) 111.**
	- G. Six& **and G.S. Reddy. J. OrganometaL Chem.. 42 (1972) 267.**
- 6 R.J.H. Clark, A.G. Davies, R.J. Puddephatt and W. McFarlane, J. Amer. Chem. Soc., 91 (1969) 1334.
- **W. McFadane. J. Chem. Sot. A. (1968) 1630.**
- **G. Klose. Arm. phys.** 9 **(1962) 262.**
- **R. Dree&+mp. Z. Physik, Cbem.. 38 (1963) 121.; Z. Naturfozsch. A. 19 (1964) 139.**
- 10 P.A. Schen and J.P. Oliver, J. Amer. Chem. Soc., 94 (1972) 8026.
- **'J.V. Hatton. W.G, Ekbneider and W. Siebrand; J. dhem:Phys., 39 (1963) 1330.**
- 12 H.F. Henneike, J. Amer. Chem. Soc., 94 (1972) 5945.
- **G.W. Smith. J. Chem. Phys.. 39<1963) 2031; 40 (1963) 2037.**
- 14 H.S. Gutowaky, M. Karplus and D.M. Grant, J. Chem. Phys., 31 (1959) 1278.
- **G.J. Karabatsds. F-D_ Grabam and F.M. Vane. J. Amer. Chem. Sot.. 84 (1962) 37.**
- **H-A. Bent. Chem. Rev., 61(1961) 275.**
- **F.J. Weigert, M. Winokurend J.D. Roberts, J. Amer. Chem. Sot.. SO (1968) 1566.**
- **F.J. Weigert and J-D. Roberts.** Inorg **Chem.. 12 (1973) 313.**
- **W. McFarlane. J. Chem. Sot. A, (1967) 528.**
- **H.&f. McConnell, J. Chem. Phys. 24 (1956) 460.**
- 21 R.K. Ingham, S.D. Rosenberg and H. Gilman, Chem. Rev., 60 (1960) 459.
- **R.W. Leeper, L. Summers and H. Gilman, Chem. Rev., 54 (1954) 101.**
- **H. Zimmer, I. Hechknbleikner, O.A. Homberg and** M. **Danzik. J. Org. Chem.. 29 (1964) 2632.**
- **G. Sin&z. J. Org. Chem.. 31<1966) 949.**
- **G. Sin& J. Orgsnometal. Chem.. 11<1968) 133.**
- **L.J. Bellamy. The Infraxed Spectra of Complex** Molecules. **2nd ed.. Wiley. New York. 1958. p_ 110.**
- **K_ Skido. T. Miyanisi, K. Nabika and S. Kozima. J. Organometal. Chem.. ll(1968) 281.**
- **R-S. Drag0 and N.A.** Matwiyoff. **J. Organometal; Chem..** 3 (1965) 62.
- **H-P_ Fritz and K-E. Schwarzhami. J. Organometal. Chem.. l(1964) 297.**
- 30 H.G. Kuivila, J.L. Considine, R.J. Mynott and R.H. Sarma, J. Organometal. Chem., 55 (1973) C11

'.